Логарифмические уравнения и неравенства

- 1. Ёмкость высоковольтного конденсатора в телевизоре $C=2\cdot 10^{-6}$ Ф. Параллельно с конденсатором подключен резистор с сопротивлением $R=5\cdot 10^6$ Ом. Во время работы телевизора напряжение на конденсаторе $U_0=16$ кВ. После выключения телевизора напряжение на конденсаторе убывает до значения U (кВ) за время, определяемое выражением $t=\alpha RC\log_2\frac{U_0}{U}$ (с), где $\alpha=0,7$ постоянная. Определите напряжение на конденсаторе, если после выключения телевизора прошло 21 с. Ответ дайте в киловольтах.
- **2.** Для обогрева помещения, температура в котором поддерживается на уровне $T_{\Pi}=20~^{\circ}\mathrm{C}$, через радиатор отопления пропускают горячую воду. Расход проходящей через трубу воды m=0,3 кг/с. Проходя по трубе расстояние x, вода охлаждается от начальной температуры $T_{\mathrm{B}}=60~^{\circ}\mathrm{C}$ до температуры $T(^{\circ}\mathrm{C})$, причем $x=\alpha\frac{cm}{\gamma}\log_{2}\frac{T_{\mathrm{B}}-T_{\mathrm{H}}}{T-T_{\mathrm{H}}}$, где $c=4200\frac{\Box \mathrm{M}}{\mathrm{K}\Gamma \cdot {}^{\circ}\mathrm{C}}$ теплоемкость воды, $\gamma=21\frac{\mathrm{Br}}{\mathrm{M}\cdot {}^{\circ}\mathrm{C}}$ коэффициент теплообмена, а $\alpha=0,7$ постоянная. Найдите, до какой температуры (в градусах Цельсия) охладится вода, если длина трубы радиатора равна 84 м.
- 3. Водолазный колокол, содержащий в начальный момент времени $\upsilon=3$ моля воздуха объемом $V_1=8$ л, медленно опускают на дно водоема. При этом происходит изотермическое сжатие воздуха до конечного объема V_2 . Работа, совершаемая водой при сжатии воздуха, определяется выражением $A=\alpha\upsilon T\log_2\frac{V_1}{V_2}$ (Дж), где $\alpha=5,75$ постоянная, а $T=300~\mathrm{K}$ температура воздуха. Какой объем V_2 (в литрах) станет занимать воздух, если при сжатии газа была совершена работа в 10 350 Дж?

Водолазный колокол, содержащий $\upsilon=2$ моля воздуха при давлении $p_1=1,5$ атмосферы, медленно опускают на дно водоёма. При этом происходит изотермическое сжатие воздуха до конечного давления p_2 . Работа, совершаемая водой при сжатии воздуха, определяется выражением

 $A = lpha
u T \log_2 rac{p_2}{p_1}$, где $\, lpha = 5,75 - ext{постоянная}, \, T = 300 \ ext{K} - ext{температура воздуха.}$ Найдите,

какое давление p_2 (в атм) будет иметь воздух в колоколе, если при сжатии воздуха была совершена работа в 6900 Дж.