Логарифмические уравнения и неравенства

1. 1. Ёмкость высоковольтного конденсатора в телевизоре $C = 2 \cdot 10^{-6}$ Ф. Параллельно с конденсатором подключен резистор с сопротивлением $R = 5 \cdot 10^6$ Ом. Во время работы телевизора напряжение на конденсаторе $U_0 = 16$ кВ. После выключения телевизора напряжение на конденсаторе убывает до значения U (кВ) за время, определяемое выражением $t = \alpha R C \log_2 \frac{U_0}{U}$ (с), где $\alpha = 0.7$ – постоянная. Определите напряжение на конденсаторе, если после выключения телевизора прошло 21 с. Ответ дайте в киловольтах.

Решение.

Задача сводится к решению неравенства $t \ge 21$ при заданных значениях начального напряжения на конденсаторе $U_0 = 16$ кВ, сопротивления резистора $R = 5 \cdot 10^6$ Ом и ёмкости конденсатора $C = 2 \cdot 10^{-6}$ Ф:

$$t \geq 21 \Leftrightarrow 0, 7 \cdot 2 \cdot 10^{-6} \cdot 5 \cdot 10^{6} \cdot \log_2 \frac{16}{U} \geq 21 \Leftrightarrow \log_2 \frac{16}{U} \geq 3 \Leftrightarrow \frac{16}{U} \geq 8 \Leftrightarrow U \leq 2 \text{ kB}.$$

Ответ: 2.

2. 2. Для обогрева помещения, температура в котором поддерживается на уровне $T_{\rm II}=20~^{\circ}{\rm C}$, через радиатор отопления пропускают горячую воду. Расход проходящей через трубу воды $m=0,3~{\rm kr/c}$. Проходя по трубе расстояние x, вода охлаждается от начальной температуры $T_{\rm B}=60~^{\circ}{\rm C}$ до температуры $T(^{\circ}{\rm C})$, причем $x=\alpha\frac{cm}{\gamma}\log_2\frac{T_{\rm B}-T_{\rm II}}{T-T_{\rm II}}$, где $c=4200\frac{\Box x}{{\rm kr}\cdot{\rm c}}$ — теплоемкость воды, $\gamma=21\frac{{\rm Br}}{{\rm M}\cdot{\rm c}}$ — коэффициент теплообмена, а $\alpha=0,7$ — постоянная. Найдите, до какой температуры (в градусах Цельсия) охладится вода, если длина трубы радиатора равна 84 м.

Решение.

Задача сводится к решению уравнения $\alpha \frac{cm}{\gamma} \log_2 \frac{T_{\rm B} - T_{\rm H}}{T - T_{\rm H}} = 84$ при заданных значениях теплоёмкости воды $c = 4200 \; \frac{\text{Дж}}{\text{КГ} \cdot {}^{\circ}\text{C}}$, коэффициента теплообмена $\gamma = 21 \; \frac{\text{Вт}}{\text{м} \cdot {}^{\circ}\text{C}}$, постоянной $\alpha = 0.7$, температуры помещения $T_{\rm H} = 20 \; {}^{\circ}\text{C}$ и расхода воды $m = 0.3 \; \text{кг/c}$:

$$0.7 \cdot \frac{4200 \cdot 0.3}{21} \log_2 \frac{60 - 20}{T - 20} = 84 \Leftrightarrow \log_2 \frac{40}{T - 20} = 2 \Leftrightarrow \frac{40}{T - 20} = 4 \Leftrightarrow T = 30 \,^{\circ}\text{C}.$$

Ответ: 30.

3. 3. Водолазный колокол, содержащий в начальный момент времени $\upsilon=3$ моля воздуха объемом $V_1=8$ л, медленно опускают на дно водоема. При этом происходит изотермическое сжатие воздуха до конечного объема V_2 . Работа, совершаемая водой при сжатии воздуха, определяется выражением $A=\alpha\upsilon T\log_2\frac{V_1}{V_2}$ (Дж), где $\alpha=5,75$ – постоянная, а $T=300~\mathrm{K}$ – температура воздуха. Какой объем V_2 (в литрах) станет занимать воздух, если при сжатии газа была совершена работа в 10 350 Дж?

Решение.

Задача сводится к решению уравнения $\alpha v T \log_2 \frac{V_1}{V_2} = 10350$ при заданных значениях постоянной $\alpha = 5,75$, температуры воздуха T = 300 K, количества воздуха v = 3 моль и объема воздуха $V_1 = 8$ л:

$$5,75\cdot 3\cdot 300\cdot \log_2\frac{8}{V_2}=10350 \Leftrightarrow \log_2\frac{8}{V_2}=2 \Leftrightarrow \frac{8}{V_2}=4 \Leftrightarrow V_2=2 \ \pi.$$

Ответ: 2.

Водолазный колокол, содержащий $\upsilon=2$ моля воздуха при давлении $p_1=1,5$ атмосферы, медленно опускают на дно водоёма. При этом происходит изотермическое сжатие воздуха до конечного давления p_2 . Работа, совершаемая водой при сжатии воздуха, определяется выражением $A=\alpha\upsilon T\log_2\frac{p_2}{p_1}$, где $\alpha=5,75$ — постоянная, T=300 К — температура воздуха. Найдите, какое давление p_2 (в атм) будет иметь воздух в колоколе, если при сжатии воздуха была совершена работа в 6900 Дж.

Решение.

Задача сводится к решению неравенства $\alpha v T \log_2 \frac{p_2}{p_1} \le 6900$ при заданных значениях постоянной $\alpha = 5.75$, температуры воздуха T = 300 K, начального давления $p_1 = 1.5$ атм и количества воздуха v = 2 моль:

$$5,75\cdot 2\cdot 300\cdot \log_2 \frac{p_2}{1,5} \leq 6900 \Leftrightarrow \log_2 \frac{p_2}{1,5} \leq 2 \Leftrightarrow \frac{p_2}{1,5} \leq 4 \Leftrightarrow p_2 \leq 6$$
атм.

Ответ: 6.