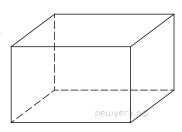
Прямоугольный параллелепипед

1. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 3 и 4. Площадь поверхности этого параллелепипеда равна 94. Найдите третье ребро, выходящее из той же вершины.



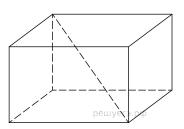
Решение.

Площадь поверхности параллелепипеда с ребрами a_1 , a_2 , a_3 дается формулой $S=2(a_1a_2+a_1a_3+a_2a_3)$. Пусть неизвестное ребро равно x. Подставляя известные величины из условия, получаем:

$$2(3 \cdot 4 + 3x + 4x) = 94 \Leftrightarrow 7x + 12 = 47 \Leftrightarrow x = 5.$$

Ответ: 5.

2. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2. Площадь поверхности параллелепипеда равна 16. Найдите его диагональ.



Решение.

Пусть длина третьего ребра, исходящего из той же вершины, равна x, тогда площадь поверхности параллелепипеда даётся формулой $S=2(1\cdot 2+1\cdot x+2\cdot x)=6x+4$. По условию площадь поверхности равна 16, тогда 6x+4=16, откуда x=2.

Длина диагонали прямоугольного параллелепипеда равна квадратному корню из суммы квадратов его измерений, поэтому $d=\sqrt{1^2+2^2+2^2}=3$.

Ответ: 3.

Примечание о том, как не надо решать эту задачу.

Обозначим известные ребра за a_1 и a_2 , а неизвестное за a_3 . Площадь поверхности параллелепипеда выражается как $S=2(a_1a_2+a_1a_3+a_2a_3)$. Выразим a_3 :

$$a_3(a_1+a_2) = \frac{S}{2} - a_1 a_2,$$

откуда неизвестное ребро

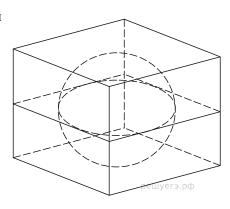
$$a_3 = \frac{S/2 - a_1 a_2}{a_1 + a_2} = \frac{8 - 2}{3} = 2,$$

Диагональ параллелепипеда находится как

$$d = \sqrt{a_1^2 + a_2^2 + a_3^2} = 3.$$

Ответ: 3.

3. Прямоугольный параллелепипед описан около единичной сферы. Найдите его площадь поверхности.

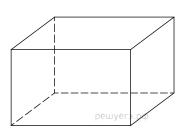


Решение.

Высота и сторона такого параллелепипеда равны диаметру сферы, поэтому это куб с ребром 2. Площадь его поверхности равна $6 \cdot 4 = 24$.

Ответ: 24.

4. Площадь грани прямоугольного параллелепипеда равна 12. Ребро, перпендикулярное этой грани, равно 4. Найдите объем параллелепипеда.



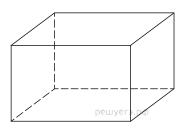
Решение.

Объем прямоугольного параллелепипеда равен V=Sh, где S — площадь грани, а h — высота перпендикулярного к ней ребра. Имеем

$$V = Sh = 12 \cdot 4 = 48$$
.

Ответ: 48.

5. Объем прямоугольного параллелепипеда равен 24. Одно из его ребер равно 3. Найдите площадь грани параллелепипеда, перпендикулярной этому ребру.



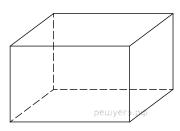
Решение.

Объем прямоугольного параллелепипеда равен V=Sh, где S — площадь грани, а h — высота перпендикулярного к ней ребра. Тогда площадь грани

$$S = \frac{V}{h} = \frac{24}{3} = 8.$$

Ответ: 8.

6. Объем прямоугольного параллелепипеда равен 60. Площадь одной его грани равна 12. Найдите ребро параллелепипеда, перпендикулярное этой грани.

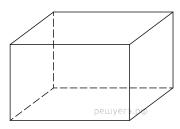


Объем прямоугольного параллелепипеда равен V=Sh, где S — площадь грани, а h — высота перпендикулярного к ней ребра. Тогда

$$h = \frac{V}{S} = \frac{60}{12} = 5.$$

Ответ: 5.

7. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2 и 6. Объем параллелепипеда равен 48. Найдите третье ребро параллелепипеда, выходящее из той же вершины.

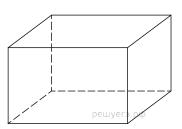


Решение.

Объем прямоугольного параллелепипеда равен произведению его измерений. Поэтому, если x — искомое ребро, то $2 \cdot 6 \cdot x = 48$, откуда x = 4.

Ответ: 4.

8. Три ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 4, 6, 9. Найдите ребро равновеликого ему куба.



Решение.

Объем куба $V = a^3$ равен объему параллелепипеда

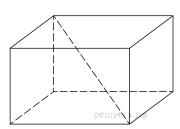
$$V = 4 \cdot 6 \cdot 9 = 216$$
.

Значит для ребра куба имеем:

$$a = \sqrt[3]{216} = 6$$
.

Ответ: 6.

9. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2, 4. Диагональ параллелепипеда равна 6. Найдите объем параллелепипеда.



Длина диагонали параллелепипеда равна

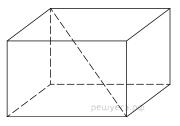
$$d = \sqrt{a_1^2 + a_2^2 + a_3^2} = \sqrt{20 + a_3^2}.$$

Длина третьего ребра тогда $a_3=\sqrt{d^2-20}=4$. Получим, что объем параллелепипеда

$$V = a_1 a_2 a_3 = 2 \cdot 4 \cdot 4 = 32.$$

Ответ: 32.

10. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2, 3. Объем параллелепипеда равен 36. Найдите его диагональ.



Решение.

Объем параллелепипеда равен

$$V = a_1 a_2 a_3 = 36.$$

Отсюда найдем третье ребро:

$$a_3 = \frac{V}{a_1 a_2} = 6.$$

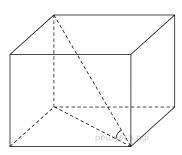
Длина диагонали параллелепипеда равна

$$d = \sqrt{a_1^2 + a_2^2 + a_3^2} = \sqrt{36 + 4 + 9} = 7.$$

Ответ: 7.

11.

Одна из граней прямоугольного параллелепипеда — квадрат. Диагональ параллелепипеда равна $\sqrt{8}$ и образует с плоскостью этой грани угол 45°. Найдите объем параллелепипеда.



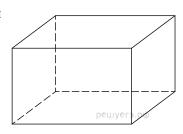
Решение.

Ребро параллелепипеда напротив угла в 45° равно $\sqrt{8}\sin 45^\circ=2$, поскольку образует с заданной диагональю и диагональю одной из граней равнобедренный треугольник. Два другие ребра по построению лежат в прямоугольных треугольниках напротив угла в 30° и равны, поэтому половине диагонали. Тогда объем параллелепипеда:

$$2 \cdot \frac{\sqrt{8}}{2} \cdot \frac{\sqrt{8}}{2} = 4.$$

Ответ: 4.

12. Ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2, 3. Найдите его площадь поверхности.



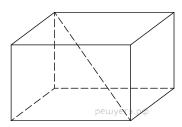
Решение.

Площадь поверхности прямоугольного параллелепипеда равна удвоенной сумме попарных произведений его измерений

$$S = 2(1 \cdot 2 + 2 \cdot 3 + 1 \cdot 3) = 22.$$

Ответ: 22.

13. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2, 4. Диагональ параллелепипеда равна 6. Найдите площадь поверхности параллелепипеда.



Решение.

Обозначим известные ребра за a_1 и a_2 , а неизвестное за a_3 . Площадь поверхности параллелепипеда выражается как

$$S = 2(a_1a_2 + a_1a_3 + a_2a_3).$$

Диагональ параллелепипеда находится как

$$d = \sqrt{a_1^2 + a_2^2 + a_3^2}.$$

Выразим a_3 :

$$a_3 = \sqrt{d^2 - a_1^2 - a_2^2}.$$

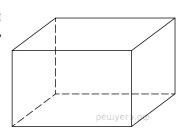
Тогда площадь поверхности

$$S = 2(a_1a_2 + a_1a_3 + a_2a_3) = 2(a_1a_2 + (a_1 + a_2)\sqrt{d^2 - a_1^2 - a_2^2}) =$$

$$= 2(8 + (2 + 4)\sqrt{36 - 4 - 16}) = 64.$$

Ответ: 64.

14. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2. Объем параллелепипеда равен 6. Найдите площадь его поверхности.



Найдем третье ребро из выражения для объема:

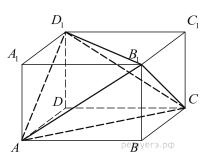
$$a_3 = \frac{V}{a_1 a_2} = \frac{6}{2} = 3.$$

Площадь поверхности параллелепипеда

$$S = 2(a_1a_2 + a_1a_3 + a_2a_3) = 2(2+3+6) = 22.$$

Ответ: 22.

15. Объем параллелепипеда $ABCDA_1B_1C_1D_1$ равен 4,5. Найдите объем треугольной пирамиды AD_1CB_1 .



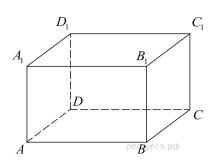
Решение.

Искомый объем равен разности объемов параллелепипеда со сторонами a, b и c и четырех пирамид, основания которых являются гранями данной треугольной пирамиды. Объём каждой из этих пирамид равен одной трети произведения площади основания на высоту, а площадь основания вдвое меньше площади основания параллелепипеда:

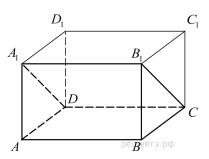
$$V = abc - 4\left(\frac{1}{3} \cdot \frac{1}{2}abc\right) = \frac{1}{3}abc = 1,5.$$

Ответ: 1,5.

16. Найдите объем многогранника, вершинами которого являются точки A, D, A_1 , B, C, B_1 прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$, у которого AB=3, AD=4, $AA_1=5$.



Из рисунка видно, что многогранник является половиной данного прямоугольного параллелепипеда. Следовательно, объём искомого многогранника дается формулой:



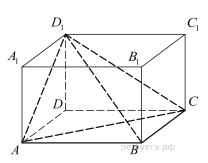
$$V_{\text{многогр}} = \frac{1}{2} V_{\text{паралл}} = \frac{1}{2} AB \cdot AD \cdot AA_1 = \frac{1}{2} \cdot 3 \cdot 4 \cdot 5 = 30.$$

Ответ: 30.

17. Найдите объем многогранника, вершинами которого являются точки $A,\ B,\ C,\ D_1$ прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$, у которого $AB=4, AD=3, AA_1=4$.

Решение.

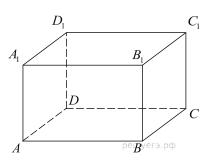
Площадь основания пирамиды в два раза меньше площади основания пареллелепипеда, а высота у них общая. Поэтому



$$V_{\text{пир}} = \frac{1}{3} S_{\text{пир}} h = \frac{1}{3} \cdot \frac{1}{2} S_{\text{пар}} h = \frac{1}{6} S_{\text{пар}} h = \frac{1}{6} \cdot 4 \cdot 3 \cdot 4 = 8.$$

Ответ: 8.

18. Найдите объем многогранника, вершинами которого являются точки A_1 , B, C, C_1 , B_1 прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$, у которого AB=4, AD=3, $AA_1=4$.

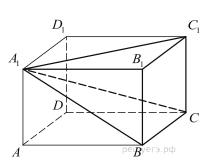


Решение.

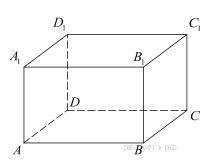
Основанием пирамиды, объем которой нужно найти, является боковая грань параллелепипеда, а ее высотой является ребро A_1B_1 . Поэтому

$$V_{\text{пир}} = \frac{1}{3} S_{\text{пир}} h = \frac{1}{3} S_{BCB_1C_1} h = \frac{1}{3} \cdot 4 \cdot 3 \cdot 4 = 16.$$

Ответ: 16.

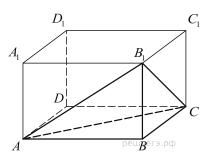


19. Найдите объем многогранника, вершинами которого являются точки A, B, C, B_1 прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$, у которого AB=3, AD=3, $AA_1=4$.



Решение.

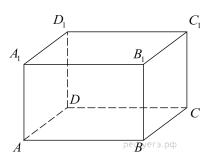
Площадь основания пирамиды в два раза меньше площади основания пареллелепипеда, а высота у них общая. Поэтому



$$V_{\text{пир}} = \frac{1}{3} S_{\text{пир}} h = \frac{1}{3} \cdot \frac{1}{2} S_{\text{пар}} h = \frac{1}{6} S_{\text{пар}} h = \frac{1}{6} \cdot 3 \cdot 3 \cdot 4 = 6.$$

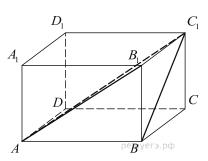
Ответ: 6.

20. Найдите объем многогранника, вершинами которого являются точки A, B, B_1 , C_1 прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$, у которого AB=5, AD=3, $AA_1=4$.



Решение.

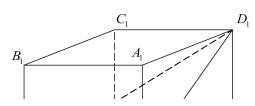
Основанием пирамиды, объем которой нужно найти, является половина боковой грани пареллелепипеда, а высотой пирамиды является ребро параллелепипеда $B_1\,C_1$. Поэтому

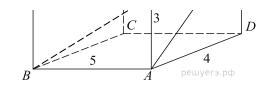


$$V_{\text{пир}} = \frac{1}{3} S_{\text{пир}} h = \frac{1}{3} \cdot \frac{1}{2} S_{\text{пар}} h = \frac{1}{6} S_{\text{пар}} h = \frac{1}{6} \cdot 4 \cdot 3 \cdot 5 = 10.$$

Ответ: 10.

21. Найдите угол ABD_1 прямоугольного параллелепипеда, для которого AB=5, AD=4, $AA_1=3$. Дайте ответ в градусах.





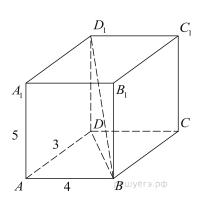
В прямоугольнике AA_1D_1D отрезок AD_1 является диагональю, $A_1D_1=AD$. По теореме Пифагора

$$AD_1 = \sqrt{AA_1^2 + A_1D_1^2} = \sqrt{9 + 16} = 5.$$

Прямоугольный треугольник ABD_1 равнобедренный: $AB=AD_1=5$, значит, его острые углы равны 45°

Ответ: 45.

22. В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известно, что AB=4, AD=3, $AA_1=5$. Найдите угол DBD_1 . Ответ дайте в градусах.



Решение.

Рассмотрим прямоугольный треугольник АВД. По теореме Пифагора

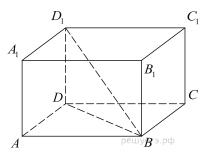
$$DB = \sqrt{AB^2 + AD^2} = \sqrt{25} = 5.$$

Рассмотрим прямоугольный треугольник BDD_1 . Так как $DB = AA_1 = DD_1$, то треугольник BDD_1 является равнобедренным, значит, углы при его основании равны по 45° .

Ответ: 45.

23.

В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известно, что $BD_1=3, CD=2, AD=2$. Найдите длину ребра AA_1 .



Найдем диагональ BD прямоугольника ABCD по теореме Пифагора:

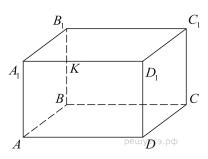
$$BD = \sqrt{AD^2 + CD^2} = \sqrt{8}.$$

Рассмотрим прямоугольный треугольник DD_1B . По теореме Пифагора

$$AA_1 = DD_1 = \sqrt{BD_1^2 - BD^2} = \sqrt{9 - 8} = 1.$$

Ответ: 1.

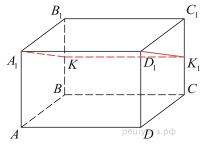
24. В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ ребро AB=2, ребро $AD=\sqrt{5}$, ребро $AA_1=2$. Точка K середина ребра BB_1 . Найдите площадь сечения, проходящего через точки A_1,D_1 и K.



Решение.

Сечение пересекает параллельные грани по параллельным отрезкам. Поэтому четырехугольник $A_1KK_1D_1$ —параллелограмм. Кроме того, ребро A_1D_1 перпендикулярно граням DD_1C_1C и AA_1B_1B , поэтому углы $A_1D_1K_1$ и D_1A_1K —прямые. Следовательно, сечение $A_1KK_1D_1$ — прямоугольник.

Из прямоугольного треугольника A_1B_1K по теореме Пифагора найдем A_1K :



$$A_1K = \sqrt{(A_1B_1)^2 + (B_1K)^2} = \sqrt{4+1} = \sqrt{5}.$$

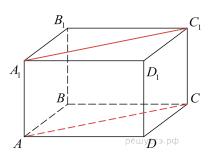
Тогда площадь прямоугольника $A_1KK_1D_1$ равна:

$$A_1D_1 \cdot A_1K = \sqrt{5} \cdot \sqrt{5} = 5.$$

Ответ: 5.

25. В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны длины рёбер: AB=24, AD=10, $AA_1=22$. Найдите площадь сечения, проходящего через вершины A, A_1 и C.

Сечение пересекает параллельные грани по параллельным отрезкам. Поэтому сечение AA_1C_1C — параллелограмм. Кроме того, ребро A_1A перпендикулярно граням ABCD и $A_1B_1C_1D_1$. Поэтому углы AA_1C_1 и A_1AC — прямые.Поэтому сечение AA_1C_1C — прямоугольник.



Из прямоугольного треугольника ABC найдем AC:

$$AC = \sqrt{(AB)^2 + (BC)^2} = \sqrt{24^2 + 10^2} = \sqrt{676} = 26.$$

Тогда площадь прямоугольника AA_1C_1C равна:

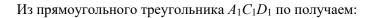
$$AA_1 \cdot AC = 22 \cdot 26 = 572.$$

Ответ: 572.

26. В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны длины рёбер AB=8, AD=6, $AA_1=21$. Найдите синус угла между прямыми CD и A_1C_1 .

Решение.

Отрезки DC и D_1C_1 лежат на параллельных прямых, поэтому искомый угол между прямыми A_1C_1 и DC равен углу между прямыми A_1C_1 и D_1C_1 .



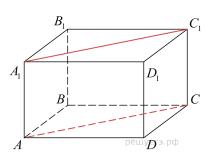
$$A_1C_1 = \sqrt{(D_1C_1)^2 + (A_1D_1)^2} = \sqrt{64 + 36} = 10.$$

Тогда для угла $A_1C_1D_1$ имеем:

$$\sin A_1 C_1 D_1 = \frac{A_1 D_1}{A_1 C_1} = \frac{6}{10} = 0, 6.$$

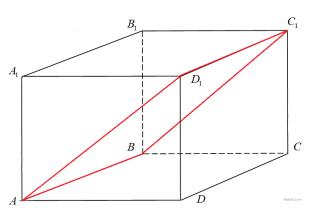


27. В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны длины рёбер: AB = 3, AD = 5, AA_1 = 12. Найдите площадь сечения параллелепипеда плоскостью, проходящей через точки A, B и C_1 .



Сечение пересекает параллельные грани по параллельным отрезкам. Поэтому сечение ABC_1D_1 — параллелограмм. Кроме того, ребро AB перпендикулярно граням AA_1D_1D и $A_1BB_1C_1C$. Поэтому углы D_1AB и ABC_1 — прямые. Поэтому сечение ABC_1D_1 — прямоугольник.

Из прямоугольного треугольника AD_1D найдем AD_1 :



$$AD_1 = \sqrt{(AD)^2 + (DD_1)^2} = \sqrt{5^2 + 12^2} = \sqrt{169} = 13.$$

Тогда площадь прямоугольника ABC_1D_1 равна:

$$AB \cdot AD_1 = 3 \cdot 13 = 39.$$

Ответ: 39.