Параболы

1. Постройте график функции $y = \frac{x^4 - 13x^2 + 36}{(x - 3)(x + 2)}$ и определите, при каких значениях параметра c прямая y = c имеет с графиком ровно одну общую точку.

Решение.

Разложим числитель дроби на множители:

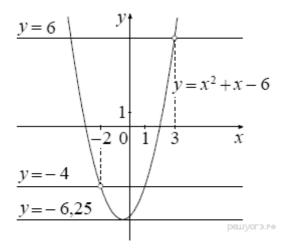
$$x^4 - 13x^2 + 36 = (x^2 - 4)(x^2 - 9) = (x - 2)(x + 2)(x - 3)(x + 3).$$

При $x \neq -2$ и $x \neq 3$ функция принимает вид:

$$y = (x-2)(x+3) = x^2 + x - 6$$
,

её график — парабола с выколотыми точками (-2;-4) и (3;6).

Прямая y=c имеет с графиком ровно одну общую точку либо тогда, когда проходит через вершину параболы, либо тогда, когда пересекает параболу в двух точках, одна из которых — выколотая. Вершина параболы имеет координаты (-0.5; -6.25).



Поэтому c = -6.25, c = -4 или c = 6.

2. При каком значении p прямая y = -2x + p имеет с параболой $y = x^2 + 2x$ ровно одну общую точку? Найдите координаты этой точки. Постройте в одной системе координат данную параболу и прямую при найденном значении p.

Решение.

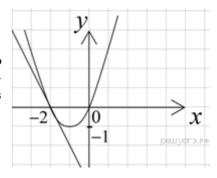
График функции изображён на рисунке.

Запишем условие общей точки:

$$-2x + p = x^2 + 2x \Leftrightarrow x^2 + 4x - p = 0.$$

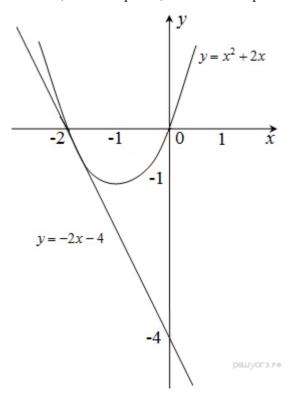
Прямая y = -2x + p будет иметь с параболой единственную общую точку при условии, что дискриминант полученного квадратного уравнения равен нулю: 16 + 4p = 0, откуда p = -4. Подставив значение параметра в уравнение, находим x = -2, y = 0.

Ответ: p = -4, координата точки: (-2;0).



3. При каких отрицательных значениях k прямая y = kx - 4 имеет с параболой $y = x^2 + 2x$ ровно одну общую точку? Найдите координаты этой точки и постройте данные графики в одной системе координат.

Для того, чтобы прямая и парабола имели одну общую точку необходимо, чтобы дискриминант равнялся нулю. Дискриминант равен: $(2-k)^2-16$. Он обращается в ноль при k=-2 или k=6. По условию необходимо отрицательное k, таким образом, k=-2. Построим графики функций:



Найдем точку пересечения параболы с прямой:

$$-2x-4=x^2+2x \Leftrightarrow x=-2$$
, таким образом $y=0$.

Ответ: При k = -2; Парабола пересекает прямую в точке (-2;0).

4. Известно, что парабола проходит через точку $B(-1; -\frac{1}{4})$ и её вершина находится в начале координат. Найдите уравнение этой параболы и вычислите, в каких точках она пересекает прямую y=-16.

Решение.

Уравнения параболы, вершина которой находится в начале координат: $y=ax^2$. Парабола проходит через точку B, поэтому $-\frac{1}{4}=a\cdot(-1)^2$, откуда $a=-\frac{1}{4}$. Уравнение параболы: $y=-\frac{1}{4}x^2$. Абсциссы точек пересечения с прямой y=-16 найдем из уравнения $-\frac{1}{4}x^2=-16$; $x_1=8,\ x_2=-8$.

Other:
$$-\frac{1}{4}x^2$$
, $(8; -16)$, $(-8; -16)$.

5. Парабола проходит через точки K(0; -5), L(3; 10), M(-3; -2). Найдите координаты её вершины.

Одна из возможных форм записи уравнения параболы в общем виде выглядит так: $y = ax^2 + bx + c$. Координата x вершины параболы находится по формуле $x_{\rm B} = -\frac{b}{2a}$. Координату y вершины параболы найдётся подстановкой $x_{\rm B}$ в уравнение параболы. Таким образом, задача сводится к нахождению коэффициентов a,b и c. Подставив координаты точек, через которые проходит парабола, в уравнение параболы и получим систему из трёх уравнений:

$$\begin{cases} c = -5, \\ 9a + 3b + c = 10, \Leftrightarrow \\ 9a - 3b + c = -2 \end{cases} \Leftrightarrow \begin{cases} c = -5, \\ 9a + 3b + c = 10, \Leftrightarrow \\ 18a - 10 = 8 \end{cases} \Leftrightarrow \begin{cases} c = -5, \\ b = 2, \\ a = 1. \end{cases}$$

Найдём координаты вершины:

$$x_{\rm B} = -\frac{2}{2} = -1,$$

 $y_{\rm B} = 1 - 2 - 5 = -6.$

Ответ: (-1; -6).

6. При каких значениях p вершины парабол $y = -x^2 + 2px + 3$ и $y = x^2 - 6px + p$ расположены по разные стороны от оси x?

Решение.

Координата x вершины параболы определяется по формуле $x_{\rm B} = -\frac{b}{2a}$. Координата $y_{\rm B}$ вершины находится подстановкой $x_{\rm B}$ в уравнение параболы. Вершины парабол будут находится по разные стороны от оси x, если координаты их вершин имеют разные знаки. Вспомнив, что два сомножителя имеют разный знак тогда и только тогда, когда их произведение отрицательно, составим и решим неравенство:

$$(-p^2+2p^2+3)(9p^2-18p^2+p)<0 \Leftrightarrow (p^2+3)(-9p^2+p)<0.$$

Заметим, что первый множитель всегда больше нуля, поэтому на него можно разделить.

$$-9p\left(p-\frac{1}{9}\right)<0 \Leftrightarrow p\left(p-\frac{1}{9}\right)>0.$$

Произведение двух сомножителей будет больше нуля, если сомножители имеют одинаквый знак (см. рисунок). Таким образом, получаем ответ:

$$\begin{cases}
p < 0, \\
p > \frac{1}{9}.
\end{cases}$$

Otbet:
$$(-\infty; 0) \cup \left(\frac{1}{9}; \infty\right)$$
.

Примечание.

Координату $y_{\rm B}$ параболы также можно найти по формуле $y_{\rm B} = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$.

7. При каких значениях p вершины парабол $y = x^2 - 2px - 1$ и $y = -x^2 + 4px + p$ расположены по разные стороны от оси x?

Абсцисса вершины параболы определяется по формуле $x_{\rm B} = -\frac{b}{2a}$. Для данных парабол это точки p и 2p.

Ордината $y_{\rm B}$ вершины находится подстановкой $x_{\rm B}$ в уравнение параболы. Для данных парабол получаем: $p^2-2p^2-1=-(p^2+1)$ и $-4p^2+8p^2+p=4p^2+p$.

Вершины парабол находятся по разные стороны от оси абцсисс, если ординаты их вершин имеют разные знаки.

Два множителя имеют разные знаки тогда и только тогда, когда их произведение отрицательно. Тем самым, требуется решить неравенство $-(p^2+1)(4p^2+p)<0$. Заметим, что первый множитель меньше нуля при всех значениях p, поэтому на него можно разделить, изменив знак неравенства на противоположный. Имеем:

$$-(p^2+1)(4p^2+p) < 0 \Leftrightarrow 4p^2+p > 0 \Leftrightarrow 4p\left(p+\frac{1}{4}\right) > 0.$$

Произведение двух сомножителей больше нуля, если они имеют один и тот же знак (см. рис.). Таким образом, получаем ответ:

$$\begin{bmatrix}
p < -\frac{1}{4}, \\
p > 0.
\end{bmatrix}$$

Otbet:
$$\left(-\infty; -\frac{1}{4}\right) \cup \left(0; \infty\right)$$
.

Примечание.

Ординату вершины параболы также можно найти по формуле $y_{\rm B} = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$.

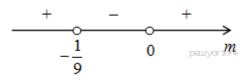
8. При каких значениях m вершины парабол $y = -x^2 - 6mx + m$ и $y = x^2 - 4mx - 2$ расположены по одну сторону от оси x?

Координата x вершины параболы определяется по формуле $x_{\rm B} = -\frac{b}{2a}$. Координата $y_{\rm B}$ вершины находится подстановкой $x_{\rm B}$ в уравнение параболы. Вершины парабол будут находится по одну сторону от оси х, если координаты их вершин имеют одинаковые знаки. Вспомнив, что два сомножителя имеют одинаковый знак тогда и только тогда, когда их произведение положительно, составим и решим неравенство:

$$(-9m^2 + 18m^2 + m)(4m^2 - 8m^2 - 2) > 0 \Leftrightarrow (9m^2 + m)(-4m^2 - 2) > 0.$$

Заметим, что второй множитель всегда меньше нуля, поэтому на него можно разделить.

$$9m\left(m+\frac{1}{9}\right)<0 \Leftrightarrow m\left(m+\frac{1}{9}\right)<0.$$



$$-\frac{1}{9} < m < 0.$$

OTBET:
$$\left(-\frac{1}{9}; 0\right)$$
.

Примечание.

Координату $y_{\rm B}$ параболы также можно найти по формуле $y_{\rm B} = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$.

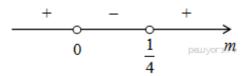
9. При каких значениях m вершины парабол $y = x^2 - 4mx + m$ и $y = -x^2 + 8mx + 4$ расположены по одну сторону от оси x?

Координата x вершины параболы определяется по формуле $x_{\rm B} = -\frac{b}{2a}$. Координата $y_{\rm B}$ вершины находится подстановкой $x_{\rm B}$ в уравнение параболы. Вершины парабол будут находится по одну сторону от оси х, если координаты их вершин имеют одинаковые знаки. Вспомнив, что два сомножителя имеют одинаковый знак тогда и только тогда, когда их произведение положительно, составим и решим неравенство:

$$(4m^2 - 8m^2 + m)(-16m^2 + 32m^2 + 4) > 0 \Leftrightarrow (-4m^2 + m)(16m^2 + 4) > 0.$$

Заметим, что второй множитель всегда больше нуля, поэтому на него можно разделить.

$$-4m\left(m-\frac{1}{4}\right)>0 \Leftrightarrow m\left(m-\frac{1}{4}\right)<0.$$



$$0 < m < \frac{1}{4}.$$

OTBET:
$$\left(0; \frac{1}{4}\right)$$
.

Примечание.

Координату $y_{\rm B}$ параболы также можно найти по формуле $y_{\rm B} = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$.

10. Известно, что графики функций $y = x^2 + p$ и y = -2x - 2 имеют ровно одну общую точку. Определите координаты этой точки. Постройте графики заданных функций в одной системе координат.

Найдём абсциссы точек пересечения:

$$x^{2} + p = -2x - 2 \Leftrightarrow x^{2} + 2x + p + 2 = 0.$$

Графики функций, будут иметь ровно одну точку пересечения, если это уравнение имеет ровно одно решение. То есть, если дискриминант этого квадратного уравнения будет равен нулю.

$$4 - 4(p+2) = 0 \Leftrightarrow p = -1.$$

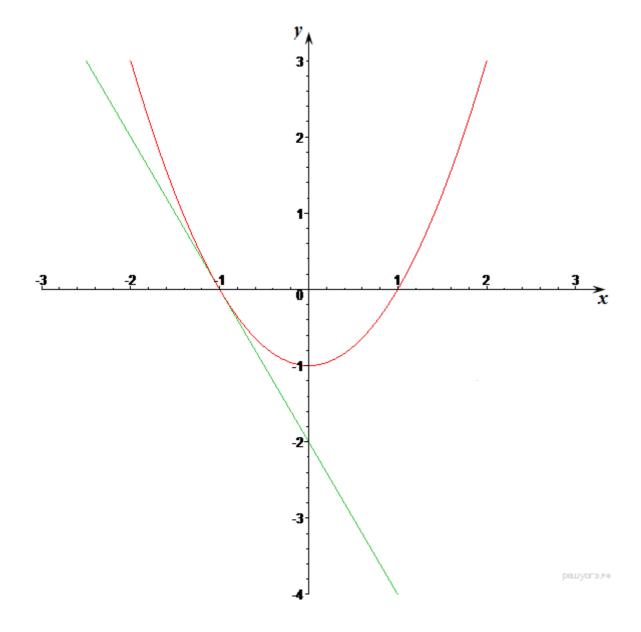
Подставив параметр p в уравнение, найдём x координату точки пересечения этих функций:

$$x^{2} + 2x + 1 = 0 \Leftrightarrow (x+1)^{2} = 0 \Leftrightarrow x = -1.$$

Координата y находится оттуда же путём подстановки координаты x в любое из уравнений, например, во второе:

$$y = -2 \cdot (-1) - 2 = 0.$$

Теперь, зная p, можем построить графики обеих функций (см. рисунок).



11. При каком значении р прямая y = 2x + p имеет с параболой $y = x^2 - 2x$ ровно одну общую точку? Найдите координаты этой точки. Постройте в одной системе координат данную параболу и прямую при найденном значении p.

Решение.

Найдём абсциссы точек пересечения:

$$2x + p = x^2 - 2x \Leftrightarrow x^2 - 4x - p = 0.$$

Графики функций, будут иметь ровно одну точку пересечения, если это уравнение имеет ровно одно решение. То есть, если дискриминант этого квадратного уравнения будет равен нулю.

$$16 + 4p = 0 \Leftrightarrow p = -4$$
.

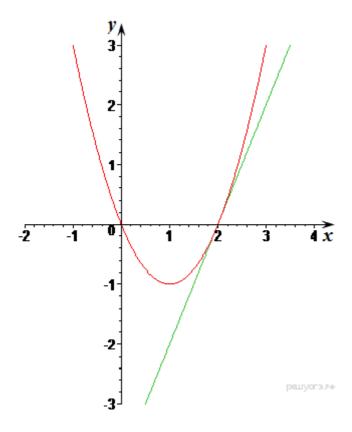
Подставив параметр p в уравнение, найдём x координату точки пересечения этих функций:

$$x^2 - 4x + 4 = 0 \Leftrightarrow (x - 2)^2 = 0 \Leftrightarrow x = 2.$$

Координата y находится путём подстановки координаты x в любое из уравнений, например, в первое:

$$y = 2 \cdot 2 - 4 = 0.$$

Теперь, зная p, можем построить графики обеих функций (см. рисунок).



Ответ: (2; 0).

12. При каких положительных значениях k прямая y = kx - 4 имеет с параболой $y = x^2 - 3x$ ровно одну общую точку? Найдите координаты этой точки и постройте данные графики в одной системе координат.

Найдём абсциссы точек пересечения:

$$x^{2} - 3x = kx - 4 \Leftrightarrow x^{2} - (3 + k)x + 4 = 0.$$

Графики функций, будут иметь ровно одну точку пересечения, если это уравнение имеет ровно одно решение. То есть, если дискриминант этого квадратного уравнения будет равен нулю.

$$(3+k)^2 - 16 = 0 \Leftrightarrow$$

$$\begin{bmatrix} 3+k = -4, \\ 3+k = 4. \end{bmatrix} \Leftrightarrow \begin{bmatrix} k = -7, \\ k = 1. \end{bmatrix}$$

По условию k > 0, поэтому нам подходит значение k = 1.

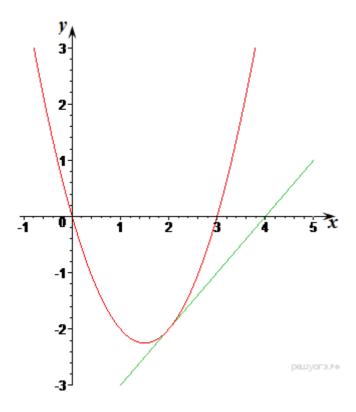
Подставив параметр k в уравнение, найдём x координату точки пересечения этих функций:

$$x^2 - 4x + 4 = 0 \Leftrightarrow (x - 2)^2 = 0 \Leftrightarrow x = 2.$$

Координата y находится путём подстановки координаты x в любое из уравнений, например, в первое:

$$y = 2 - 4 = -2$$
.

Теперь, зная k, можем построить графики обеих функций (см. рисунок).



Ответ: k = 1, координаты точки: (2; -2).

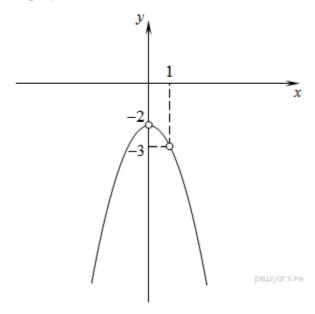
13. Постройте график функции $y = -2 - \frac{x^4 - x^3}{x^2 - x}$ и определите, при каких значениях m прямая y = m имеет с графиком ровно две общие точки.

Упростим выражение:

$$y = -2 - \frac{x^4 - x^3}{x^2 - x} = -2 - \frac{x^3(x - 1)}{x(x - 1)} = -2 - x^2.$$

Таким образом, получили, что график нашей функции сводится к графику функции $y=-x^2-2$ с выколотыми точками (0;-2) и (1;-3). Построим график функции (см. рисунок).

Этот график изображён на рисунке:



Из графика видно, что прямая y=m имеет с графиком функции ровно две общие точки при m принадлежащем промежутку $(-\infty; -3) \cup (-3; -2)$.

Ответ:
$$(-\infty; -3) \cup (-3; -2)$$
.

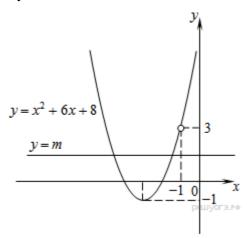
14. Постройте график функции $y = \frac{(x+4)(x^2+3x+2)}{x+1}$ И определите, при каких значениях m прямая y = m имеет с графиком ровно одну общую точку.

Упростим выражение:

$$y = \frac{(x+4)(x^2+3x+2)}{x+1} = \frac{(x+4)(x+1)(x+2)}{x+1} = x^2+6x+8.$$

График функции сводится к графику параболы $y = x^2 + 6x + 8$ с выколотой точкой (-1; 3).

Этот график изображён на рисунке:



Из графика видно, что прямая y=m имеет с графиком функции ровно одну общую точку при m=-1 и m=3.

Ответ: -1; 3.

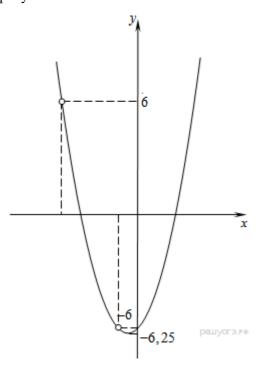
15. Постройте график функции $y = \frac{(x^2 + 7x + 12)(x^2 - x - 2)}{x^2 + 5x + 4}$ и определите, при каких значениях m прямая y = m имеет с графиком ровно одну общую точку.

Преобразуем выражение:

$$y = \frac{(x^2 + 7x + 12)(x^2 - x - 2)}{x^2 + 5x + 4} = \frac{(x+3)(x+4)(x+1)(x-2)}{(x+1)(x+4)} = x^2 + x - 6.$$

График исходной функции сводится к графику параболы $y = x^2 + x - 6$ с выколотыми точками (-1; -6), (-4; 6).

Этот график изображён на рисунке:



Из графика видно, что прямая y=m имеет с графиком функции ровно одну общую точку при m равном -6,25; -6; 6.

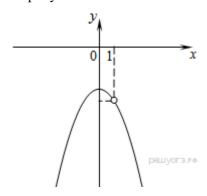
Ответ: -6,25; -6; 6.

16. Постройте график функции $y = \frac{(x^2+2,25)(x-1)}{1-x}$ и определите, при каких значениях k прямая y = kx имеет с графиком ровно одну общую точку.

Упростим выражение:

$$y = \frac{(x^2 + 2,25)(x-1)}{1-x} = -x^2 - 2,25$$

График исходной функции сводится к графику параболы $y = -x^2 - 2,25$ с выколотой точкой (1; -3,25). Этот график изображён на рисунке:



Чтобы прямая y = kx имела с построенным графиком одну общую точку, нужно чтобы или прямая y = kx была касательной к графику $y = -x^2 - 2,25$ (и точка касания не равна 1), или прямая y = kx пересекает график $y = -x^2 - 2,25$ в точке x = 1 и в какой-то второй точке.

Случай касания реализуется когда дискриминант квадратного уравнения $-x^2-2, 25=kx$ равен нулю.

$$k^2 - 9 = 0$$
$$k = \pm 3$$

При этом если k = -3, точка касания x = 1, 5, а если k = 3, точка касания x = -1, 5.

Для рассмотрения второго случая подставим x=1 в уравнение $-x^2-2,25=kx$. получим k=-3,25. При этом дискриминант этого уравнения будет больше нуля, значит еще одно решение точно есть.

Ответ: -3,25; -3; 3.

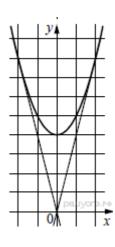
17. Найдите все значения k, при каждом из которых прямая y = kx имеет с графиком функции $y = x^2 + 4$ ровно одну общую точку. Постройте этот график и все такие прямые.

Решение.

Построим график функции $y = x^2 + 4$.

Прямая y = kx имеет с этим графиком ровно одну общую точку, если уравнение $x^2 + 4 = kx$ имеет один корень. Дискриминант этого уравнения равен $k^2 - 16$, и он должен быть равен нулю. Получаем, что k = -4 или k = 4.

Ответ: -4; 4.



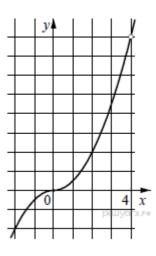
18. Постройте график функции $y = \frac{(0,5x^2 - 2x)|x|}{x-4}$ и определите, при каких значениях m прямая y = m не имеет с графиком ни одной общей точки.

Преобразуем выражение $\frac{(0,5x^2-2x)|x|}{x-4}=0,5x|x|$ при условии, что $x\neq 4$.

Построим график функции $y = -0.5x^2$ при x < 0 и график функции $y = 0.5x^2$ при $0 \le x < 4$ и x > 4.

Прямая y = m не имеет с графиком ни одной общей точки при m = 8.

Ответ: 8.



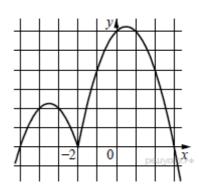
19. Постройте график функции $y = 4|x+2| - x^2 - 3x - 2$ и определите, при каких значениях m прямая y = m имеет с графиком ровно три общие точки.

Решение.

Построим график функции $y = -x^2 - 7x - 10$ при x < -2 и график функции $y = -x^2 + x + 6$ при $x \ge -2$.

Прямая y = m имеет с графиком ровно три общие точки, если она проходит через вершину первой параболы и пересекает вторую или если она проходит через точку (-2; 0) \square . Получаем, что m = 0 и m = 2.25.

Ответ: 0; 2,25.



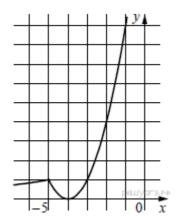
20. Постройте график функции

$$y = \begin{cases} x^2 + 8x + 16, \text{ если } x \ge -5, \\ -\frac{5}{x}, \text{ если } x < -5, \end{cases}$$

и определите, при каких значениях m прямая y = m имеет с графиком одну или две общие точки.

Решение.

Построим график функции $y=-\frac{5}{x}$ при x<-5 и график функции $y=x^2+8x+16$ при $x\geq-5$.



Прямая y=m имеет с графиком одну или две общие точки при m=0 и при $m\geq 1$. Ответ: 0; [1; $+\infty$)

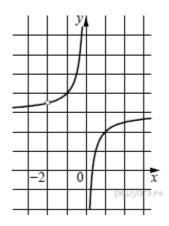
21. Постройте график функции

$$y = 3 - \frac{x+2}{x^2 + 2x}$$

и определите, при каких значениях m прямая y = m не имеет с графиком ни одной общей точки.

Решение.

Преобразуем выражение $3 - \frac{x+2}{x^2+2x} = 3 - \frac{1}{x}$ при условии, что $x \neq -2$. Построим график:



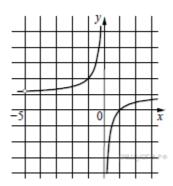
Прямая y=m не имеет с графиком ни одной общей точки при m=3 и $m=\frac{7}{2}$.

Ответ: 3; $\frac{7}{2}$.

22. Постройте график функции $y = 1 - \frac{x+5}{x^2+5x}$ и определите, при каких значениях m прямая y = m не имеет с графиком ни одной общей точки.

Решение.

Преобразуем выражение: $1-\frac{x+5}{x^2+5x}=1-\frac{1}{x}$ при условии, что $x\neq -5$. Построим график:

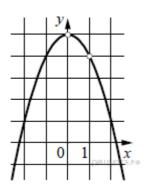


Прямая y = m не имеет с графиком ни одной общей точки при m = 1 и $m = \frac{6}{5}$.

Otbet: 1; $\frac{6}{5}$.

23. Постройте график функции $y = 5 - \frac{x^4 - x^3}{x^2 - x}$ и определите, при каких значениях m прямая y = m имеет с графиком ровно две общие точки.

Преобразуем выражение: $5 - \frac{x^4 - x^3}{x^2 - x} = 5 - x^2$ при условии, что $x \neq 1$ и $x \neq 0$. Построим график:



Прямая y = m имеет с графиком ровно две общие точки при m < 4 и при 4 < m < 5. Ответ: $(-\infty, 4)$; (4, 5).

24. Постройте график функции $y = \frac{(0,75x^2 - 0,75x)|x|}{x-1}$ и определите, при каких значениях m прямая y = m не имеет с графиком ни одной общей точки.

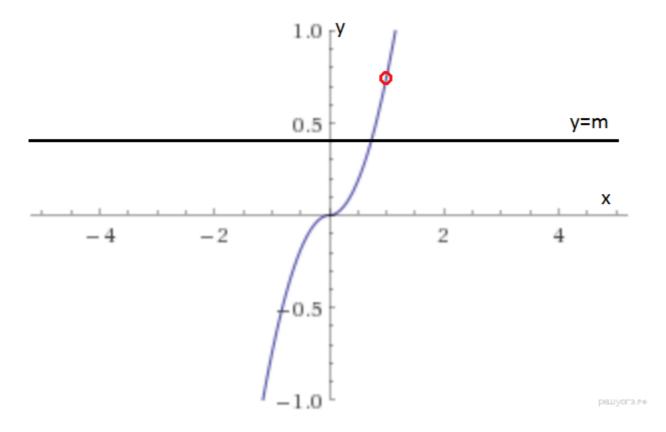
Решение.

Раскрывая модуль и упрощая, получим, что функцию можно представить следующим образом:

$$y = \begin{cases} 0.75x^2, \text{ при } x \ge 0\\ -0.75x^2, \text{при } x < 0 \end{cases}$$

При этом на графике функции нужно выколоть точку (1;0,75), поскольку при упрощении мы сокращали выражение x-1, стоящее в знаменателе.

Этот график изображён на рисунке:



Из графика видно, что прямая y = m не имеет с графиком функции ни одной общей точки при m = 0.75.

Ответ: 0,75.

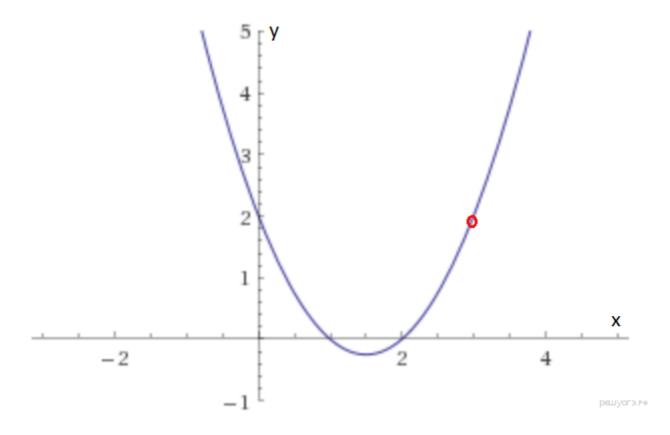
25. Постройте график функции $y = \frac{(x-1)(x^2-5x+6)}{x-3}$ и определите, при каких значениях m прямая y = m имеет с графиком ровно одну общую точку

Решение.

Упростим выражение:

$$y = \frac{(x-1)(x^2 - 5x + 6)}{x - 3} = (x - 1)(x - 2) = x^2 - 3x + 2$$

График исходной функции сводится к графику параболы $y = x^2 - 3x + 2$ с выколотой точкой (3;2). Этот график изображён на рисунке:



Из графика видно, что прямая y=m имеет с графиком одну общую точку, если y=2 или y=-0,25 Ответ: -0,25; 2