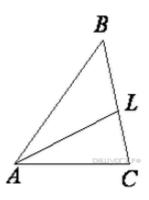
Треугольники общего вида

1. У треугольника со сторонами 16 и 2 проведены высоты к этим сторонам. Высота, проведённая к первой стороне, равна 1. Чему равна высота, проведённая ко второй стороне?


Решение.

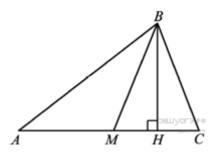
Пусть известные стороны треугольника равны a и b а высоты, проведённые к ним h_a и h_b . Площадь треугольника можно найти как половину произведения стороны на высоту, проведённую к этой стороне:

$$\frac{1}{2}ah_a = \frac{1}{2}bh_b \Leftrightarrow h_b = \frac{ah_a}{b},$$
$$h_b = \frac{16\cdot 1}{2} = 8.$$

Ответ: 8.

2. В треугольнике ABC проведена биссектриса AL, угол ALC равен 112° , угол ABC равен 106° . Найдите угол ACB. Ответ дайте в градусах.

Решение.

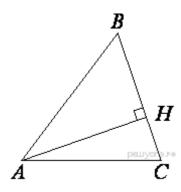

Пусть угол BAL равен α , угол ACB равен β . Сумма углов в треугольнике ABC равна 180° , откуда $2\alpha+106^\circ+\beta=180^\circ$. Аналогично, из треугольника ALC $\alpha+112^\circ+\beta=180^\circ$. Получаем систему уравнений:

$$\begin{cases} 2\alpha + 106^{\circ} + \beta = 180^{\circ}, \\ \alpha + 112^{\circ} + \beta = 180^{\circ} \end{cases} \Leftrightarrow \begin{cases} 2(68^{\circ} - \beta) + \beta = 74^{\circ}, \\ \alpha = 68^{\circ} - \beta \end{cases} \Leftrightarrow \begin{cases} \beta = 62^{\circ}, \\ \alpha = 6^{\circ}. \end{cases}$$

Таким образом, угол ACB равен 62° .

Ответ: 62.

3. В треугольнике ABC проведены медиана BM и высота BH . Известно, что AC = 84 и BC = BM. Найдите AH.



Решение.

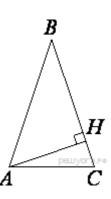
Поскольку BM — медиана, $AM = MC = \frac{AC}{2} = \frac{84}{2} = 42$. Рассмотрим треугольник BMC, BC = BM, следовательно, треугольник BMC — равнобедренный, BH — высота, следовательно, BH — медиана, откуда $MH = HC = \frac{MC}{2} = \frac{42}{2} = 21$. Найдём AH : AH = AM + MH = 42 + 21 = 63.

Ответ: 63.

4. В остроугольном треугольнике ABC высота AH равна $20\sqrt{3}$, а сторона AB равна 40. Найдите $\cos B$.

Решение.

Рассмотрим прямоугольный треугольник АВН, из теоремы Пифагора найдём ВН:

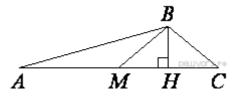

$$BH = \sqrt{AB^2 - AH^2} = \sqrt{1600 - 1200} = 20.$$

По определению косинус угла в прямоугольном треугольнике — это отношение прилежащего катета к гипотенузе:

$$\cos B = \frac{BH}{AB} = \frac{20}{40} = \frac{1}{2} = 0,5.$$

Ответ: 0,5.

5. В треугольнике $ABC\ AB = BC$, а высота AH делит сторону BC на отрезки BH = 64 и CH = 16. Найдите $\cos B$.


Решение.

Из треугольника АВН, по определению косинуса:

$$\cos B = \frac{BH}{AB} = \frac{BH}{BC} = \frac{BH}{BH + CH} = \frac{64}{64 + 16} = \frac{4}{5} = 0.8.$$

Ответ: 0,8.

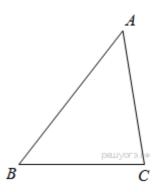
6. В треугольнике $ABC\ BM$ — медиана и ВН — высота. Известно, что $AC=216,\ HC=54$ и $\angle ACB=40^{\circ}$. Найдите угол AMB. Ответ дайте в градусах.

Решение.

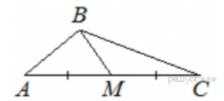
Поскольку BM — медиана, $AM = MC = \frac{AC}{2} = \frac{216}{2} = 108$. Найдём MH: MH = MC - HC = 108 - 54 = 54. Рассмотрим треугольники BHM и BHC, они прямоугольные, MH равно HC, BH — общая, следовательно, треугольники равны. Откуда BC = BM, то есть треугольник MBC — равнобедренный, значит, $\angle BMH = \angle BCH = 40^\circ$. Углы AMB и BMC — смежные, вместе составляют развёрнутый угол, поэтому $\angle AMB = 180^\circ - \angle BMC = 180^\circ - 40^\circ = 140^\circ$.

Ответ: 140.

7. Углы B и C треугольника ABC равны соответственно 65° и 85°. Найдите BC, если радиус окружности, описанной около треугольника ABC, равен 14.


Решение.

Сумма углов треугольника равна 180° , поэтому $\angle A = 180^{\circ} - 65^{\circ} - 85^{\circ} = 30^{\circ}$. По теореме синусов:


$$2R = \frac{BC}{\sin A} = \frac{AB}{\sin C} = \frac{AC}{\sin B}$$
.

Откуда получаем, что $BC = 2R \cdot \sin A = 2 \cdot 14 \cdot \frac{1}{2} = 14$.

Ответ: 14.


8. В треугольнике ABC известно, что AC = 54, BM - медиана, BM = 43. Найдите AM.

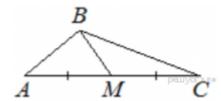
Решение.

Так как BM - медиана, следовательно $AM = \frac{AC}{2} = \frac{54}{2} = 27$ Ответ: 27

9. В треугольнике ABC известно, что AC=38, BM - медиана, BM=17. Найдите AM.

Решение.

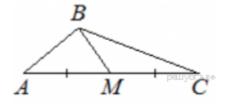
Так как *BM* - медиана, следовательно $AM = \frac{AC}{2} = \frac{38}{2} = 19$ Ответ: 19


10. В треугольнике два угла равны 36° и 73°. Найдите его третий угол. Ответ дайте в градусах. **Решение.**

Сумма углов треугольника равна 180°. Следовательно, $180^\circ - 36^\circ - 73^\circ = 71^\circ$ Ответ: 71

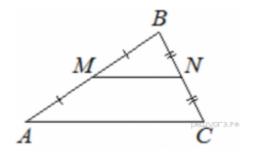
11. В треугольнике два угла равны 43° и 88°. Найдите его третий угол. Ответ дайте в градусах. **Решение.**

Сумма углов треугольника равна 180°. Следовательно, $180^\circ-43^\circ-88^\circ=49^\circ$ Ответ: 49


12. В треугольнике ABC известно, что AC=32, BM - медиана, BM=23. Найдите AM.

Решение.

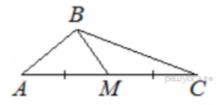
Так как BM - медиана, следовательно $AM = \frac{AC}{2} = \frac{32}{2} = 16$ Ответ: 16


13. В треугольнике ABC известно, что AC = 58, BM - медиана, BM = 37. Найдите AM.

Решение.

Так как BM - медиана, следовательно $AM = \frac{AC}{2} = \frac{58}{2} = 29$ Ответ: 29

14. Точки M и N являются серединами сторон AB и BC треугольника ABC, сторона AB равна 66, сторона BC равна 37, сторона AC равна 74. Найдите MN


Решение.

Поскольку MN соединяет середины двух сторон треугольника ABC, MN является средней линией, она параллельна AC и равна её половине:

$$MN = \frac{AC}{2} = \frac{74}{2} = 37$$

Ответ: 37

15. В треугольнике ABC известно, что AC = 16, BM - медиана, BM = 12. Найдите AM.

Решение.

Так как BM - медиана, следовательно $AM = \frac{AC}{2} = \frac{16}{2} = 8$ Ответ: 8

16. В треугольнике два угла равны 38° и 89°. Найдите его третий угол. Ответ дайте в градусах.

Сумма углов треугольника равна 180°. Следовательно, $180^\circ - 38^\circ - 89^\circ = 53^\circ$ Ответ: 53

17. В треугольнике два угла равны 31° и 94°. Найдите его третий угол. Ответ дайте в градусах.

Сумма углов треугольника равна 180°. Следовательно, $180^{\circ}-31^{\circ}-94^{\circ}=55^{\circ}$ Ответ: 55